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This report describes a new methodology aimed at grouping 3D-QSAR interaction energy
descriptors into regions of neighbor variables bearing the same chemical and statistical
information. These regions represent the structural variability of the series better than
individual descriptor variables and can advantageously replace them in the chemometric
analysis. The algorithm used to generate such regions is described, together with their
application for improving the quality of GOLPE variable selection. The method is illustrated
on a series of 47 glucose analogues, inhibitors of glycogen phosphorylase b, and is shown to
improve both the predictive ability and the interpretability of the 3D-QSAR models obtained,
comparing favorably with other methods previously described.

Introduction

In 3D-QSAR methodologies1-4 the series of com-
pounds are described by a vast number of grid-field
variables. These variables are obtained by defining a
three-dimensional grid around the compounds and
calculating at each node the energy of interaction
between the compound and a “probe”, which represents
a chemical group. The idea behind these methodologies
is that changes in the structure of the compounds will
induce changes in the field variables, which somewhat
represent the interaction of the compounds with the
receptor and can be correlated with the activity by a
partial least squares (PLS) model.
It is evident that even the smaller structural change

in the compounds will not be reflected in a single
variable but rather in a group of field variables that are
spatially contiguous. These groups represent portions
of the space surrounding the compounds which are
affected in the same way by the structural variations
in the series, and as a consequence, all variables inside
the group bear the same information. However, when
the 3D matrices of energies are unfolded into vectors
to build the matrix of descriptors X the grid variables
are considered individually and therefore the informa-
tion contained in their positions in the 3D space is lost.
This report describes an original methodology called

smart region definition (SRD)5,6 aimed at extracting
from a matrix of 3D-QSAR descriptors groups of neigh-
bor variables in the 3D space (regions) bearing the same
information. Such groups take into account the spatial
continuity constraint (neighbor variables containing
similar information) in order to produce more stable
models, less prone to chance correlations and easier to
interpret. Here we describe their use in GOLPE7-9

variable selection where they replace the role of the
individual variables.
There are many ways in which the X variables (grid

nodes) can be grouped. The state-of-the-art in the field
is represented by the methods reported by Cho and
Tropsha10 and Norinder,11 who group the variables into
square boxes of fixed size following only a geometrical

criterion. On the contrary, the SRD procedure works
by extracting a subset of highly informative X variables
and then partitioning the space around the molecules
amongs them. The regions formed following such a
scheme have a shape and a size which depends upon
the amount of information contained by the variables;
areas rich in information contain many informative
variables which compete for the space, thus producing
many small regions, while areas poor in information will
contain few large regions. Consequently, the regions
produced by the SRD method tend to contain single,
independent pieces of information. In this sense SRD
represents a major improvement with respect to the
present methods of grouping variables. The Cho and
Tropsha10 and Norinder11 approaches do not guarantee
that each box contains a single different piece of
information; some boxes will contain little or no infor-
mation, while others will contain many distinct pieces
of information. Moreover, some pieces of information
can be split into two or more contiguous boxes.
The regions generated by SRD have been used to

improve variable selection in the GOLPE7-9 procedure.
The combined SRD/GOLPEmethod evaluates the effect
of regions of variables, instead of individual variables,
on the predictive ability of the PLS model. Finally, the
regions (rather than the individual variables) not con-
tributing to increasing the predictive power of the model
will be removed from the model. The advantage of using
regions in the procedure is 2-fold: first, the analysis
takes into account the information about their 3D
position, thus introducing a new continuity constraint
which minimizes the risk of chance effects and leads to
more predictive models. Second, the selected variables
are grouped in the space and so are the results of the
PLS analysis, thus greatly increasing its interpret-
ability. In addition, as the number of regions is
significantly smaller than the number of variables, the
SRD/GOLPEmethod does not require any more variable
preselection and the computations are performed in a
fraction of the time required for the regular fractional
factorial design (FFD) variable selection.7-9

On the other hand, it is doubtful that the boxesX Abstract published in Advance ACS Abstracts, March 15, 1997.
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generated by the Cho and Tropsha and Norinder
methods can be successfully used in variable selection
because, as mentioned above, they do not contain unique
information. Norinder, although using a design crite-
rion in a GOLPE-like fashion, reported only marginal
improvements in the predictive ability. The Cho and
Tropsha method can be criticized also because the effect
of each box on the predictive power of the model is
evaluated individually (one box at a time) without using
any design criteria for selecting a representative num-
ber of box combinations.

The SRD Algorithm

With the aim of obtaining a grouping of variables with
the aforementioned characteristics, we developed a
computational algorithm which involves three major
steps: (1) selecting the most informative variables
(seeds) in an initial PLS model, (2) building Voronoi
polyhedra around the seeds containing neighboring
variables in 3D space, (3) merging of the polyhedra
containing similar information into larger regions. It
should be noticed that step 1 is performed in the
chemometric space of the PLS weights on the whole X
matrix, while steps 2 and 3 are performed in the real
3D space around the molecules and are repeated
separately for each field or probe used to describe the
compounds.
Step 1. Selecting Seeds. The idea is to select a set

of variables (grid nodes) important for explaining the
activity and as independent as possible of each other.
In the subsequent steps of the algorithm they will be
used to generate regions, hence their name, seeds. The
number of seeds determines the number of regions, and
therefore it is important to select a number of seeds
large enough to single out every area involved in the
interaction.
In order to select these grid nodes, the method has to

evaluate the amount of information contained in the
variables they represent. The algorithm starts from an
initial PLS model and extracts a given number of
variables following a D-optimal design criterion in the
chemometric space of the PLS weights. Variables
selected in such a way represent grid nodes that have
a high importance for the model (with high absolute
values of the PLS weights) and are, to a large extent,
independent of each other.
Step 2. Building Voronoi Polyhedra. The seeds

selected in the previous step are placed in the real space
around the molecules, in the field to which they belong.
Then, each X variable in the dataset is assigned to the
nearest seed following a Euclidean distance criterion in
the 3D space, thus producing a number of Voronoi
polyhedra (VP). Variables which are farther than a
certain cutoff from each seed are assigned to a special
region (region 0) and removed from the analysis. The
areas containing a large amount of important informa-
tion will be populated by many seeds, and this will
result in more and smaller VP, while areas which
contain less information, if not removed from the
analysis, will contain fewer and larger VP. The number
of VP can be different in each field: fields containing
more information will produce more VP, while the fields
less important for the activity will produce fewer VP.
The region 0 contains variables which are far away

from any seed. As the seeds are supposed to represent

all the important information, variables belonging to
region 0 are considered not important for the model and
are therefore removed from further PLS analysis. It is
interesting to plot the variables in this region in 3D
space: they usually highlight areas far away from the
compounds, where no interaction is possible, or positions
where the compounds in the series exhibit no chemical
variation (see Figure 1).
Step 3. Collapsing of Polyhedra. The VP can be

used directly as regions, but if neighboring regions do
contain the same information they can be profitably
combined together to produce larger regions. In order
to check whether the regions do actually contain the
same information, the algorithm computes the correla-
tion of the information contained in the regions. Only
those regions for which this information is strongly
correlated are merged into a single common region. The
operation is called “collapsing” and is performed as
follows. Once the polyhedra are built, the information
contained in each one of them is summarized by
computing three new parameters. For each polyhedron
i the following parameters are computed: Pi, average of
the values for all the variables (grid node energies)
included in the region; P+i, average of the values for all
the variables included in the region that take positive
values; and P-i, average of the values for all the
variables included in the region that take negative
values. Notice that Pi, P+i, and P-i are parameters that
take a different value for each object molecule, thus
defining three vectors throughout all the molecules. It
can happen that for a molecule in a certain region one
of the elements constituting the P vector never takes
either a positive or a negative value. This situation
occurs when in that region a molecule contains only
positive (repulsive intaraction) variables. In this case
Pi and P+i are defined while P-i does not exist and will
be handled as a missing value in subsequent computa-
tions. Then the algorithm looks for the two nearest
seeds (i and j) and makes pairwise comparisons of the
missing value patterns for the plus and minus vectors
(P+i and P+j, and P-i and P-j). When the patterns are
different, collapsing is aborted. When the patterns are
identical, the algorithm computes the correlation coef-
ficient (Pearson’s r) between the variables Pi, P+i, and
P+j. The regions are merged into a new region only if
r(Pi,Pj) > 0.80, r(P+i,P+j) > 0.50, and r(P-i,P-j) > 0.50.
The criterion for collapsing is conservative and prefers

not to collapse two regions when they are slightly
different. When two regions are merged, a new region
is created which contains all the variables originally
included in the old ones. In order to define its position
in the 3D space, the algorithm calculates the coordinates
of a “pseudoseed” as the weighted average of the original
seeds coordinates. The procedure continues searching
for the nearest seeds and merging them until the
distance between them is higher than a given cutoff. If
the cutoff distance is set to a high value, all of the
regions are applicable for collapsing.
It often happens, when the collapsing cutoff distance

is high, that regions far away from each other (even in
opposite corners of the grid cage) are merged together.
There is nothing wrong in this phenomenon, which
reveals two areas that contain correlated information
in the actual series (a change in structure in the first
area is always accompanied by a similar change in
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structure in the second area). Indeed, it is extremely
useful to unveil such internal correlations which oth-
erwise might give rise to hidden misleading effects in
the dataset.
Adjustment of the SRD Algorithm. The SRD

algorithm contains a number of parameters which can
be adjusted to obtain better results: (1) the number of
seeds to be extracted, (2) the dimensionality of the
chemometric space, (3) the critical distance cutoff for
building the VP, and (4) the cutoff distance in the
collapsing operation. The strategy that yields the best
results for all the datasets we have tested so far is to
extract a large number of seeds and a short critical
distance cutoff, so many small VP are produced. All of
them constitute an informative layer around the mol-
ecule, while variables far away from this layer are
included in region 0 and then removed from the analy-
sis. Optionally, some of the regions with useful infor-
mation may be merged to simplify the picture, using
high values for the collapsing cutoff distance. We have
observed that there is an intrinsic limit in the number
of regions: even when very different numbers of seeds
are extracted at the beginning, they collapse in a nearly
similar number of regions.
In order to show graphically the results of the SRD

algorithm, we have carried out the described procedure

using the set of glucose analogues which will be de-
scribed in detail below. As this run was produced only
for demonstrative purposes, only 40 seeds were used.
Some of the regions defined in the analysis are shown
in Figure 1, where the structure of one of the glucose
analogues and some important residues of the receptor
are also represented. The green volume in Figure 1a
encloses all the regions used in the analysis. The
excluded area, which extends from this volume to the
boundaries of the box, is the so-called region 0 and
contains nonimportant variables. When this volume is
compared with the structure of the receptor (not in-
cluded in the analysis), it can be seen that SRD has
removed from the analysis the variables placed farther
away from the residues which are those containing no
information. Also, variables falling into that part of the
structure which shows no variation within the series
were included in region 0 and removed from the
analysis.
In Figure 1b a few selected regions have been repre-

sented in different colors. It is worth noting how areas
rich in information are represented by many small VP
while areas less important are represented by fewer and
larger VP. For instance, the small white and purple
regions at the bottom of Figure 1b represent one of the
areas bearing more information, the location where the

Figure 1. (a, Top) Stereoview of the regions generated by the SRD method. The green volume encloses all the active regions.
The area outside of the green volume corresponds to region 0 and contains variables removed from further analysis. (b, Bottom)
Stereoview of some regions generated by the SRD method (see text for explanation). In both pictures the structure of the most
active compound (45) and some residues of the receptor were also included to aid in the interpretation.
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2-hydroxyl and 1R-glucosyl substituents interact with
Asp 283. On the contrary, the large orange region
represents an area where the glucosyl ring interacts
weakly with the protein. The structure of the inhibitors
exhibits much less variation in this area, and conse-
quently the region contains much less information. The
claim that such regions represent potential interactions
is supported by the finding that some of them clearly
overlap water molecules present in the crystal structure
of the complexes. All of these results show how the SRD
regions contain single, independent pieces of informa-
tion and how the results are in agreement with the
structure of the receptor, not included in any step of
the analysis.

Methods

The method presented has been implemented in the GOLPE
program12 and successfully applied in our group to a few
different datasets. Further details of these investigations will
be reported in due course. In this paper, the method has been
applied in a GRID/GOLPE, CoMFA-like study onto a new set
of recently synthesized glucose analogs which are inhibitors
of the glycogen phosphorylase b (GPb) enzyme13-17 (Table 1).
The purpose of this study is mainly comparative because we
wanted to assess the suitability of the method in real datasets
and to compare the different models obtained either in the
absence of any variable selection or by using other well-
established variable selection methodologies.
This set is especially suitable for 3D-QSAR methodological

research, because high-resolution crystallographic structures
of the enzyme-ligand complexes are available for every
compound in the series.17 Therefore, both the conformation
and the superposition of the compounds have been experi-
mentally determined, and it is possible to investigate the effect
of other different parameters on the quality of the models.
Figure 2 shows the compounds included in the series super-
imposed in the conformation and the position in which they
appear in the crystallographic structures.
It is important to remark that these conformations are not

the minimum energy ones but the X-ray conformations in the
refined ligand-enzyme complexes. In this sense, they give a
much better representation of the bioactive conformations than
the outcome of whatever energy minimization procedure which
considers the ligands on their own. Besides, the ligands are
in energetically reasonable conformations because the enzyme
complexes were refined using X-PLOR.18-20 The ligands
appear superimposed in approximately the same position for
every complex since the crystallographic procedure used to
determine their structure is essentially the same. However,
the crystallographic analysis superimposes the ligand-enzyme
complexes and not only the ligands. As a consequence the
ligands are not actually superimposed but rather placed in
equivalent positions with respect to their interaction within
the receptor. This fact can be observed in Figure 2, where
some compounds with large C1 substituents have been placed
in positions where the glucosyl group is slightly shifted with
respect to the rest of the compounds, reflecting the change in
the position of the glucosyl moiety required to accommodate
the bulky C1 substituent. More details about the crystal-
lographic analysis are given in ref 17 and references quoted
therein. The biological activities (Ki) have been determined
by kinetic studies and reflect the ability of the compounds to
inhibit the enzymatic activity (phosphorylase) of rabbit gly-
cogen phosphorylase enzyme. For the regression analysis the
negative decimal logarithm of the experimental Ki was used
(pKi).
The energy calculations were performed by the GRID

program,21 using the phenolic hydroxyl group probe (OH). This
group is capable of donating and accepting one hydrogen bond.
The electronic configuration of the OH probe is defined so that
it interacts with the π-system of the aromatic ring, making
the hydrogen-bonding pattern different from that of an ali-
phatic hydroxyl probe. The OH probe shows an intermediate

polarizability value between those of other similar oxygen
probes, and it makes strong hydrogen-bonding interactions
which may account for the shape of the interaction regions
with the molecular structures. For the GRID analysis, the
heavy atoms are considered in fixed positions, but the thermal
motion of the hydrogen-bonding hydrogen atoms and lone-pair
electrons is taken into account. When the target molecule
donates a hydrogen bond, then the bond direction is deter-
mined by the hydrogen position as computed from the heavy
atom structure of the molecules. When the OH probe donates
the bond, it is assumed that the probe can orient itself to form
the most effective hydrogen-bond interaction with the acceptor
atom of the target molecule.22 The OH probe was chosen
because the binding site is predominantly hydrophilic. In
particular, the R-pocket, in the absence of inhibitor, is a water-

Table 1. Series of Glucose Analog Inhibitors of Glycogen
Phosphorylase b13-17

substituent at C1 position

no. X RR Râ Ki (mM)

1 O OH H 1.7
2 O C(dO)NH2 H 0.37
3 O C(dO)NHNH2 H 3.0
4 O COOCH3 H 24.2
5 O CH2NH3

+ H 34.5
6 O CH2N3 H 22.4
7 O CH2OH H 1.5
8 O H O-(1-6)-D-glucose 16.3
9 O H C(dO)NH2 0.44
10 O H C(dO)NHCH3 0.16
11 O H C(dO)NHCH2CH2OH 2.6
12 O H C(dO)NHPh 5.4
13 O H C(dO)NH-4-OHPh 4.4
14 O H C(dO)NHNH2 0.4
15 O H C(dO)NHNHCH3 1.8
16 O H C(dO)NHCH2CF3 8.1
17 O H C(dO)NH-cyclopropyl 1.3
18 O H COOCH3 2.8
19 O H CH2NH3

+ 16.8
20 O H CH2CH2NH3

+ 4.5
21 O H CH2N3 15.2
22 O H CH2CN 9.0
23 O H NHC(dO)NH2 0.14
24 O H NHC(dO)CH3 0.032
25 O H NHC(dO)CH2CH3 0.039
26 O H NHC(dO)CH2CH2CH3 0.094
27 O H NHC(dO)CH2Cl 0.045
28 O H NHC(dO)CH2Br 0.044
29 O H NHC(dO)CH2NH2 0.37
30 O H NHC(dO)Ph 0.081
31 O H NHC(dO)CH2NHCOCH3 0.99
32 O H NHCOOCH2Ph 0.35
33 O H CH2OSO2CH3 4.8
34 O H 1H-indol-2-yloxy 2.6
35 O C(dO)NH2 NHCOOCH3 0.016
36 O OH CH2OH 15.8
37 O OH CH2N3 7.4
38 O OH CH2CN 7.6
39 O OH CH2OSO2CH3 3.7
40 O H SH 1.0
41 O H SCH2C(dO)NH2 21.1
42 O H SCH2C(dO)NHPh 3.6
43 O H SCH2C(dO)NH-2,4-F2Ph 18.9
44 S OH H 2.0
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filled channel.14 Besides, in previous studies17,23 the OH probe
was chosen among many others because it gave better results.
The size of the box was defined in such a way that it extends

about 4 Å from the structure of the inhibitors, resulting in a
box of 22 × 20 × 18 Å. GRID calculations were performed
using a grid spacing of 1 Å, thus giving 7920 probe-target
interactions for each compound, which were unfolded to
produce a one-dimensional vector of variables. A cutoff of +5
kcal/mol was applied to produce a more symmetrical distribu-
tion of the X matrix.
This matrix was then imported into GOLPE 3.0 and further

pretreated by zeroing those values with absolute values
smaller than 0.1 kcal/mol and removing any variables with
standard deviation below 0.1. In addition, variables which
take only two or three values and present a skewed distribu-
tion (one of these values is taken by only one or two molecules)
were also removed.
The SRD algorithm was applied on this matrix as described

above, with the following parameters: 457 seeds selected on
the PLS weights space, critical distance cutoff of 1.0 Å, and
collapsing distance cutoff of 2.0 Å. The regions found were
used at a later stage in a FFD variable selection procedure.7-9

In order to compare them with SRD, Norinder’s and Cho
and Trophsa’s methodologies were applied to the same matrix.
Both methods were implemented in the GOLPE 3.0 software,
where the same cross-validation technique and PLS algorithms
used in the derivation of the SRD/GOLPE models were
employed. Following Norinder’s domain mode variable selec-
tion (DMVS)11 approach, the original grid cage was divided

into 125 small boxes of approximately the same size, using
five divisions per axis. These boxes were included in a FFD
variable selection procedure as described in the original
reference.11 In Cho and Trophsa’s cross-validated r2-guided
region selection (q2-GRS)10 approach, the original grid cage was
also divided into the same 125 small boxes, and for each box
an independent PLS analysis was carried out. The model
dimensionality chosen was that showing the best predictive
ability. Only those boxes with a q2 value higher than a
predefined cutoff were used in the derivation of the final model.
Four different cutoffs were evaluated (0.0, 0.1, 0.2, and 0.3),
and that yielding the highest q2 was chosen (0.1). The GOLPE
implementation differs from the original procedure10 mainly
in two respects: single GRID field values were used, instead
of the steric and electronic fields proposed by Cho and Tropsha,
and random groups cross-validation rather than leave-one-out
(LOO) was used (vide infra).

Results and Discussion

For the comparison, PLSmodels were derived without
variable selection, with regular GOLPE variable selec-
tion (here, two D-optimal preselections plus a FFD
variable selection), and with SRD/GOLPE region selec-
tion (a single FFD selection performed on regions). The
predictive ability of the models was evaluated by cross-
validation, using five groups of approximately the same
size to which the objects were assigned randomly. The

Figure 2. Stereoview of the series of 47 glucose analogues analyzed, superimposed in the conformation, and the position where
they were found in the crystallographic analysis. White balls represent carbon atoms and gray balls heteroatoms.
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whole procedure was repeated 20 times. This cross-
validation procedure provides a safer alternative to the
more widely preferred LOO and gives more conservative
results, smaller q2 and higher standard deviation of
error of preditions (SDEP). Table 2 shows the results
of the variable selection and the PLS analyses. Figure
3 contains plots of experimental versus calculated
values for the five models, and Figures 4 and 5 illustrate
the grid plot of the PLS coefficients, for models with four
principal components (PC’s).
Comparisons between the PLS models clearly show

that both the GOLPE and the SRD/GOLPE variable
selection procedures improve the quality of the models
in terms of fitting and predictive ability. Table 2 shows
large q2 increases (23% and 25% increases) and slight
r2 increases as a result of the application of these
variable selection methods. The improvement on the
model quality is also noticeable in the experimental vs
calculated plots represented in Figure 3. On the other
hand, when comparing the classical GOLPE approach
and the new SRD/GOLPE, it turns out that the new
technique yields slightly better models, with higher q2

(about 5% higher) and r2 values. Even if the increase
of these values is not large, in order to make a fair
comparison it should be taken into account that the new
method does not require the D-optimal preselection (two
runs were required in the classical approach) and is
performed in a single run. In fact, the purpose of the
D-optimal preselection was to reduce the variables down
to a number that can be handled by the FFD variable
selection procedure. With the new SRD/GOLPE meth-
odology this variable preselection is not required any
more, and the method uses FFD variable selection from
the very beginning. In this way the new procedure is
safer since no variables are removed without assessing
the impact of their removal on the predictive power of
the model. It is noticeable that, as it is shown in the
results, this improvement on the computational aspects
of the methodology not only produces no decrement on
the quality of the models obtained but, on the contrary,
gives rise to an increase of their fitting and predictive
power. With respect to the DMVS and q2-GRS, both
methods produce a slight increment in q2 (10% and 15%
increases), smaller than the increment produced by the
use of either GOLPE or SRD/GOLPE. The r2 obtained
after DMVS is slightly better while, remarkably, it
decreases after the use of q2-GRS.

The predictive ability of the models has been further
tested using the set of four new compounds reported in
Table 3. The procedure described above has been used
to obtain the structures of the complexes between these
compounds and the GPb enzyme. Their predicted
activities, according to each model, together with their
experimental activities are reported in Table 3. The

Table 2. Results of the PLS Modeling with Different Variable
Selection Procedures

vars sel vara dimensb r2 c q2 d SDEPe

none 2087 4 0.92 0.50 0.69
GOLPE 379 4 0.93 0.73 0.51
SRD/GOLPE 457 4 0.95 0.79 0.45
DMVS 1542 4 0.94 0.60 0.63
q2-GRS 626 4 0.91 0.65 0.58
a Number of variables used in the PLS model. b Dimensionality

of the model. c Squared correlation coefficient. d Cross-validated
squared correlation coefficient. e Standard deviation of error of
predictions.

Figure 3. Scatter plot of the experimental (horizontal) versus calculated (vertical) activity values (pKi) for the five models being
compared: (a) model with no variable selection, (b) model with classical GOLPE variable selection, (c) model with SRD/GOLPE
variable selection, (d) model with Norinder’s DMVS, and (e) model with Cho and Tropsha’s q2-GRS.
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SDEP values computed for each model provide an index
which expresses how good those predictions are.
With respect to the external predictions the original,

GOLPE and SRD/GOLPE models give rather similar
SDEP values (Table 3), but again the best result is
obtained when the SRD/GOLPE method is applied. A
closer inspection of the data reveals that the three
models give quite good predicted values for three of the
four compounds (48, 49, and 51), but they fail com-
pletely to predict the activity of compound 50. This is
not surprising since 50 is quite a peculiar compound
which places a substituent in a position not explored
by any compound in the series. This singularity is
clearly highlighted in Figure 6, which represents the
structure of 50 superimposed on the rest of the com-
pounds. The models cannot know the contribution to

the activity of theN-acetamide substituent linked to the
N2, because no substituent in such a position has been
tested before, and therefore the error in the prediction
is greater than 1.5 logarithmic units (30-fold in terms
of activity). Without this compound, the total SDEP for
the SRD/GOLPE model is 0.69, not very distinct from
the internal SDEP of 0.45.
The DMVS and q2-GRS methods did not improve the

results of the external SDEP at all and produced much
worse predictions than the original model and other
variable selection methods. Indeed the DMVS method
was already reported to produce either small or no
prediction improvements for different datasets.11
The most important advantage of the SRD/GOLPE

methodology is the improved interpretability of the
models produced by this novel technique of variable

Figure 4. Grid plots of the PLS coefficients for the model with no variables selection, using four PC’s. On the plot at the left-
hand side (a) the coefficients are represented by crosses whose size is proportional to their absolute value. On the plot at the
right-hand side (b) these coefficients have been contoured at appropriate levels (+0.006 and -0.006 for positive and negative
values, respectively) in order to show only the most important coefficients. Positive coefficients are represented in yellow, and
negative coefficients are represented in cyan in both pictures. The structure of compound 35 (in red) and some of the residues of
the active site (in blue) have been included in the picture for reference.

Table 3. Set of New Glucose Analogues Used for External Predictions

activity (pKi)

no. compound exp none GOLPE SRD/GOLPE DMVS q2-GRS

48 4.07 4.04 4.09 4.10 4.25 3.78

49 3.50 3.35 3.32 3.20 2.96 2.63

50 3.26 1.40 1.57 1.82 1.11 1.19

51 4.41 3.38 3.31 3.24 3.06 2.34

SDEPa 1.07 1.01 0.93 1.30 1.53
a Standard deviation of error of predictions.
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selection. The 3D-QSARmodels are intepreted with the
help of plots that show the values of the PLS weighted
pseudocoefficients in the spatial position that they
represent around the ligands. For each grid point, the
values of such coefficients express how correlated the
probe-ligand interaction energies are with respect to
changes in the biological activity. Figure 4 represents
such a plot for the PLSmodel obtained with no variables
selection. The structure of one of the compounds (35)
and some of the most important residues in the receptor
site have been included in the plot in order to help the
interpretation.
In most cases the information given by such plots is

used to propose a hypothesis about the binding site and
to design new compounds which best mimic the interac-
tions that correlate positively with the activity while
avoiding the ones that decrease the activity. In this
particular study, in which the structures of the ligand-
receptor complexes were already available, the com-

parison between the areas highlighted by the model and
the residues actually present in the receptor have been
used to “validate” the models. It may be considered that
the models are better when the areas highlighted by
this model are near or overlap real receptor residues
where ligand-receptor interactions are stronger.
In Figure 4a the values of the coefficients have been

represented by crosses of sizes which are directly
proportional to their absolute values. It can be seen
that the model with no variable selection contains so
many small coefficients which make this method of
representation not useful at all. In order to simplify
the plot it is necessary to contour the areas containing
the highest (and lowest) coefficients, as shown in Figure
4b. Unfortunately, this operation hides a considerable
amount of information and the contributions to the
model produced by a large number of grid variables are
completely neglected. In particular, the interaction of
the ligands with residues of the R-pocket, which in

Figure 5. Stereoview of the PLS coefficients grid plot for models of four components. The coefficients are represented by crosses
whose size represent their absolute value. The structure of compound 35 and some of the residues of the active site have been
included in the picture for reference. The figure represents models obtained after different variable selection procedures: (a)
classical GOLPE, (b) SRD/GOLPE, (c) Norinder’s DMVS, and (d) Cho and Tropsha’s q2-GRS.
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Figure 4a are represented by a dense cloud of crosses
at the right-hand side, are not represented at all in
Figure 4b.
After variable selection, apart from other improve-

ments, models became simpler and they can often be
interpreted without contouring the plots. In Figure 5
we have represented stereoplots of the PLS coefficients
for the models obtained after the application of different
variable selection procedures: GOLPE (5a), SRD/
GOLPE (5b), Norinder’s DMVS (5c), and Cho and
Tropsha’s q2-GRS (5d). The purpose of those plots is to
compare the different way in which the different meth-
ods show the results of the PLS model in the space and
not to actually interpret the model. Therefore, the signs
of the coefficients have been omitted, and no contouring
application has been applied.
The model with GOLPE variable selection, is, by far,

easier to interpret than the model with no variable
selection represented in Figure 4, and no contouring
operation is strictly required. In Figure 5a the effect
of the different substituents is represented by single
leader variables which take large values and condense
the information of many contiguous variables, which in
Figure 4a appear as a cloud of small crosses. For
instance, in Figure 5a it is easy to recognize the
interaction of the ligands with the residue Asn284,
which is known to play an important role in the
interaction14,17 and is represented here by the two large
crosses overlapping the amide group of the residue.
However, this simplification is too drastic and gives an
unrealistic picture of the actual interactions, because
the structural changes in the series are never reflected
by the change of a single variable but by a few contigu-
ous variables.
The interpretability of the model is improved by the

use of SRD; in Figure 5b the effect of the different
substituents is now represented by small clusters of
variables corresponding to the groups defined by the
SRD algorithm. This solution represents a compromise
between the requirement to simplify the plots and
undesirable oversimplifications. It can be seen that
inside these groups the most important variables have

large coefficients, represented by large crosses in the
plot, but smaller contributions from contiguous vari-
ables are also preserved. Examples of the improved
interpretability of this model can be observed by com-
parison of parts a and b of Figure 5. For instance, the
interactions between the ligands and the residues
Ser674 and Gly675 (on the left-hand side of Figure 5a-
d) are important because these residues participate in
the network of hydrogen bonds which places the glyco-
sidic ring in the active site. When parts a and b of
Figure 5 are compared, it is clear that the effect of the
interaction of the ligands with these residues is repre-
sented in the GOLPE model (Figure 5a) by a few
variables which highlight only the major effect. Con-
versely in the SRD/GOLPE model (Figure 5b) the same
regions are represented by a small group of variables.
It should be noted how these regions represent, besides
the major effects, some neighboring variables which
have modest coefficients but which contribute to giving
a more detailed and quantitative picture of the interac-
tions present.
The model obtained after DMVS (Figure 5c) is not too

different from the original PLS model, and therefore
nearly no improvement on interpretability can be seen.
The model obtained with q2-GRS selection, on the
contrary, has been pruned too much and, surprisingly,
most of the important variables within the R-pocket (on
the right-hand side of the Figure 5d) have been removed.
Within the boxes retained, the aspect of the plot is quite
similar to the original PLS model, and no improvement
is apparent.

Conclusions

A new methodology aimed at building groups of
contiguous grid-field variables that contain single pieces
of chemical and statistical information has been de-
scribed. Among the many possible uses of this meth-
odology in 3D-QSAR, it has been successfully combined
with the GOLPE variable selection procedure. The
resulting SRD/GOLPE procedure improves the predic-
tive ability and the fitting of the PLS models obtained,
when compared with the models obtained with no

Figure 6. The figure represents the structure of one of the compounds used for the external predictions (50), in black, superimposed
on the rest of the compounds, in gray. Notice how the N-acetamido substituent linked to the N2 (at the bottom) occupies an area
not explored by any other compound.
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variable selection. This method is also advantageous
with respect to the classical GOLPE procedure, because
variable preselection is no longer required and because
the quality of the model obtained is slightly better.
Moreover, the models produced by this novel methodol-
ogy are easier to interpret than the models obtained
with no variable selection and give a more realistic
picture of the receptor than the models obtained by a
classical GOLPE variable selection. The SRD/GOLPE
methodology compares favorably with other methods of
variable selection which use grouping of variables (Cho
and Tropsha and Norinder methods) in terms of fitting,
predictive ability, external predictive ability, and inter-
pretability.
The methodology has been tested on a series of 47

glucose analogues which are inhibitors of glycogen
phosphorylase b. The results, in terms of internal and
external predictive power and interpretability, fully
support the conclusions. The new SRDmethodology has
been implemented in version 3.0 of the GOLPE chemo-
metric analysis program.12
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